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NUMERICAL EVALUATION OF SURFACE INTEGRALS 
IN THREE DIMENSIONS 

DAVID CHIEN 

ABSTRACT, In this paper, we consider the evaluation of surface integrals over 
piecewise smooth surfaces in three dimensions. The method consists in first 
replacing a parametrization for the surface and the integrand function by piece- 
wise polynomial interpolants of them, and second, using a numerical integration 
scheme for the resulting integral. The order of convergence is higher than would 
be expected based on the underlying interpolation theory. 

1. INTRODUCTION 

An efficient numerical integration scheme for surface integrals is important in 
boundary element methods. This paper investigates a method which consists in 
first replacing both the integrand function and a parametrization for the surface 
by piecewise polynomial interpolants of them, and then applying a numerical 
integration scheme to the resulting integral. 

Let the surface S = S1 U S2 U ... U Sj, where each SK is a smooth surface. 
Let FK : RK - ) R 3 , RK c R 2 , be a smooth parametrization of the surface 
SK in R3, with DSFK(S, t) x DtFK(s, t) :# 0 at all points. For each K, 
consider the evaluation of the surface integral 

(1.1) J f(Q)dSQ f(FK(s, t)) I DsFK(s, t) x DtFK(s, t) j dsdt, 

where f is a given continuous function defined on S, and smooth on each 
SK. 

In this paper, we approximate the function f and each parametrization 
FK by polynomials of degree n and r, respectively. Thus, we approximate 
the integration (1.1) by evaluating 

(1.2) j fn(FK(s, t)) | DsFK(S, t) x DtFK(s, t) I dsdt. 

Also, we approximate the integration (1.2) by using various numerical integra- 
tion schemes. 

Recently, Georg and Tausch [8] have investigated the rate of convergence 
for the case in which the surface parametrization is approximated by piecewise 

Received by the editor August 23, 1993 and, in revised form, February 28, 1994. 
1991 Mathematics Subject Classification. Primary 65D30; Secondary 65D05. 

)1995 American Mathematical Society 
0025-5718/95 $1.00 + $.25 per page 

727 



728 DAVID CHIEN 

linear interpolation. They obtained asymptotic error results when using integra- 
tion rules with degree of precision zero and one. Verlinden and Cools [12] and 
Lyness [10] have independently proved a conjecture from Georg and Tausch 
[8], obtaining a full asymptotic expansion of the error. 

In this paper, we refine the surface S with uniform subdivision, and the 
results and their proofs are valid for sufficiently smooth integrand functions. 
Schwab and Wendland [ 1 1] carry out a detailed analysis for the singular surface 
integrals arising in solving boundary integral equations. Also, Yang and Atkin- 
son [13] show how the singular case can be treated by composite quadrature 
with nonuniform subdivision. 

We introduce the method of discretization in ?2, and describe the method 
of interpolation for the integrand function and the surface parametrization in 
?3. Section 4 gives the error analysis when using (1.2), and ?5 has the error 
analysis for the numerical integration scheme. Section 6 gives some numerical 
examples, which illustrate the theorem in ?5. 

2. THE TRIANGULATION AND REFINEMENT 

As discussed in Atkinson [1], we assume the surface S can be written as 

(2.1) S=SIUS2U . USJ, 

where each Si is a closed, "smooth" surface in R3 . The only possible inter- 
section of a pair Si and Sj is to be along a common portion of 'the edges 
of these two subsurfaces. We assume that each Si has a parametrization in 
a region of R 2, with the parametrization r + 3 times continuously differen- 
tiable. In this case, we say S is piecewise smooth. By a smooth surface, we 
mean that for each point P E S there is a neighborhood on S of P having 
a local r + 3 times continuously differentiable parametrization in R2 with 
the Jacobian of the transformation not vanishing. 

For a smooth surface S, we also assume that the integrand f can be 
extended into a neighborhood of S, with preservation of its differentiability as 
a function on S. For S piecewise smooth, as in (2.1), we assume that f Is,Y 
has a smooth extension to a neighborhood of SK, for each K. The required 
differentiability of f depends on the degree of the interpolant, i.e., if f is 
approximated by a polynomial of degree n, then f E Cn+2(SK). Thus SK, 
for each K, should admit an at least n + 2 times continuously differentiable 
parametrization FK. For a partial discussion of the existence of extensions of 
f preserving differentiability, see Gunter [6, p. 10] 

The surface S of (2.1) is divided into a triangular mesh 

(2.2) {AK,N II < K<N}, 

where N is'the total number of triangles on the surface S. Each Sj is 
to be broken apart into a set of nonoverlapping triangularly shaped elements 
AK, N,, about which we say more below. In referring to the element AK, N, the 
reference to N will be omitted, but understood implicitly. Define the mesh 
size of (2.2) by 

N= max diam(AK), 
1<K<N 
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P22 

P4 p5 

PI P6 P3 

FIGURE 1. The unit simplex 

diam(AK) = max P -q 
P, qEAK 

Let a denote the unit simplex in the st-plane 

a = {(s, t) 1 0 < s , t, s + t < 1 }. 

Let PI, ... P6 denote the three vertices and three midpoints of the sides of 
a, numbered according to Figure 1. 

One way of obtaining the triangulation (2.2) and the mappings from a to 
each AK is by means of a parametric representation for the region Sj of 
(2.1). Assume that for each Sj, there is a mapping 

(2.3) Fj: Rj S, 1 < < 
onto 

where Rj is a polygonal domain in the plane and Fj E Cr+3(Rj). Then 
the mapping of a triangulation of Rj, using Fj, yields a triangulation of 
Sj. Since the Rj's are polygonal domains and can be written as a union of 
triangles, without loss of generality, we assume in this paper that the Rj's are 
triangles. A paraboloid with top is a good example of an S that satisfies our 
assumptions; but a circular cone is an example of an S for which some of the 
above assumptions are not valid, because of the discontinuity of the gradient at 
the vertex. 

Let AK be an element in the triangulation of Rj, and let VI iV2, and 
V3 be its vertices. Define 

(2.4) MK(S, t) = Fj(uv'l + tV'-+ SV3) U= - S - t, (S, t) E a, 

and let AK be the image of AK under this mapping. Also, if any two elements 
in this triangulation have a side in common, then their intersection will be an 
entire side of both triangles. Most surfaces S of interest can be decomposed 
as in (2.1), with each Sj representable as in (2.3). Also, the surface S 
could be smooth, and we would often still want to decompose it as in (2.1). 
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ii V5~V 

4 

V1 V6 3 

FIGURE 2. Refinement 

V V5 4 5 

FIGURE 3. A Symmetric pair of triangles 

The mapping (2.4) is used in defining interpolation and numerical integra- 
tion on AK. Introduce the node points for AK by 

Vj,K = mK(pj) j=1,...,6. 

The sequence of (2.2) will usually be obtained by successive refinements. The 
refinement process is based on connecting the midpoints of the sides of a given 
element AK. Given {vi,... v6},connect V4,V5,V6 by lines parallel to 
the sides of AK, as in Figure 2, producing four new triangular elements. The 
new elements all are congruent, and they are similar to AK . More importantly, 
in a triangulation of a polygonal region, any symmetric pair of triangles, as 
shown in Figure 3, has the following property: 

(2.5) Vi- V2 = -(i1 -V4) and Vi - V3 = -(ih -V5). 

3. INTERPOLATION 

We use Lagrange polynomials to define our polynomial interpolation. As 
an example, introduce the basis functions for quadratic interpolation on a. 
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Letting u = 1 - (s+t), define 

l1(s, t) = u(2u- 1), 12(s, t) = t(2t- 1), 13(s, t) =s(2s- 1), 
14(s, t) = 4tu, 15(s, t) = 4st, 16(s, t) = 4su. 

The functions lj(s, t) are quadratic Lagrange polynomials satisfying 

li(pj) = eij. 

Define a corresponding set of basis functions { lj, K (q) } on AK 

li,K(mK(sM t)) = l0(s, t), < j < 6, 1 < K < N. 

Given a function f E C(S), define 

6 

(3.1) fn (q) = 
,] f(vj; K) lj, K(q), q E AK, 

j=1 

for K = 1, ..., N. This is called the piecewise polynomial interpolation of 
f on the nodes of the mesh { AK } for S. 

Other kinds of interpolation can be used, such as piecewise cubic interpo- 
lation in the parametrization variables, and in this case, we need ten node 
points, Pi, ..., plo, and ten basis functions for the interpolation on a. 
For any degree n, it is possible to define the needed interpolation by using 
(n + 1)(n + 2)/2 uniformly spaced points on a. 

The integrand function f(mK(s, t)), (s, t) E a, is approximated by a 
polynomial of degree n in (s, t) 

nd 

A(MK(S, t)) f n(MK(S, t))=_E f(MK(Pj))1j(S, t), 

j=1 

where nd is the number of node points required for a polynomial of degree 
n. 

Because it is difficult or inconvenient to calculate the derivatives of parametri- 
zations of many surfaces S, we use an approximate surface SN with a parame- 
trization that is easy to differentiate. The approximate surface SN is composed 
of elements A1, ..., AK, with AK an interpolant of AK. Define 

rd F~~~~Ej= V!,/( S, t) 

nK(s, t) =mK(P])lj(s,t)= ZE1v,KlJ(S,t) , (s, t) E a, 

j=1 
LEdIV. Klj (SI t) 

where vJ K is the ith coordinate of mK (pj), and rd is the number of node 
points required for a polynomial of degree r. Thus, inK(S, t) interpolates 
mK(s, t) at { Pi, ... prd }, and each component is a polynomial of degree 
r in (s, t). 

In this paper, the interpolation methods we use for an integrand function 
f and the surface parametrization m are not necessarily the same, i.e., we 
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could have two different sets of node points and two interpolants with different 
degrees for f and m. Later on, we will introduce a numerical integration 
scheme, and we could have yet another set of node points. Thus, there might be 
up to three different sets of node points used in this paper, although in practice, 
we often have them coincide. 

4. APPROXIMATION OF INTEGRALS 

The following is the criterion for choosing node points on each AK, and it 
is important to the proof of Theorem 4.2. 

Criterion 1. Let g(s, t) be a polynomial of degree r + 1. Let {l,(s, t)} 
be the Lagrange polynomials of degree r, and let _pj}rd be the associated 
interpolation points on a. Let 

rd 

gr(s, t) t) 
i=1 

be the Lagrange form of the interpolating polynomial. Choose the node points 
such that 

J 0- [g(s, t)-gr(s, t)] ds dt = 0 

and 

[s, t) - gr(s, t)I ds dt =O. 

In this paper, using the evenly spaced node points (id, j6), 0 < i, j, i + 
] ? r, 6 = 1l/r, with r even, satisfies the Criterion 1 and we prove it in the 
following lemma. 

Lemma 4.1. Using evenly spaced node points on a and the Lagrange form of the 
interpolating polynomial of degree r, with r > 0 and even, satisfies Criterion 1. 
Proof: We have 

T s lg(s, t) -gr(S 0]t ds dt 

(4.1) = j j [ [g(s, t)-gr(s t)ldsdt 

= J1 {[g(1 - t, t) - gr(l -t, t)] - [g(O, t) - gr(0, t)]}dsdt. 

Examining (4.1), we can see that g(O, t) - gr(0, t) is a polynomial of degree 
r + 1 in t . On the line segment {(0, t): 0 < t < 1}, the interpolation node 
points are {(0, 0), (0, l/r), ... , (0, 1)}. Using the error formula for the 
interpolation error in one variable, we have 

[(0 t) - gr(0 t)]d s dt 0. 
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With a similar argument, we can show 

j(g(l-t, t)-gr(lt, t)]dsdt = 0, 

based on examining the interpolation error on the line segment {( 1 - t, t): 0 < 
t < I}. Therefore, 

/ s [g(s,t)-gr(s, t)]dsdt=O 

and 

| g(s, t) -gr(Ss t)] ds dt=O. 

This completes the proof. o 

Criterion I imposes implicitly conditions for choosing node points, and Lem- 
ma 4.1 shows that evenly spaced node points satisfy the criterion. Although 
Lemma 4.1 did not emphasize any symmetry for the nodes, a symmetry re- 
quirement could be essential to showing Criterion 1. 

In light of Lemma 4.1, we henceforth choose evenly spaced node points on 
a, and we use the Lagrange form of the interpolating polynomial. Note that 
if the degree of the interpolant is r, the number of node points, rd, can be 
calculated by the following formula: 

(r+ 1)(r+2) 
rd 2 

We state the first result below, in which we investigate the error of using (1.2) 
to approximate (1.1). 

Theorem 4.2. Let S be a piecewise smooth surface in R3. Let a be the 
mesh size of the triangulation { AK, N } of the various regions Rj. Use the 
Lagrange interpolating polynomials of degree n to approximate the integrand 
function f, and use interpolation polynomials of degree r > 0 to approximate 
the parametrization functions mK. Also, choose two sets of equally spaced node 
points for approximating f and S over each triangular region. Define 

- Ir+ 2 if r is even, n+ 2 if r is even, 
r + I if r is odd, n n + I if r is odd. 

Then 

El = I f(Q) dSQ - fn(Q) dSQ = o(P), 

where u = min{r, ni}, S = S1 U JU Sj, and f E C+2(Si) n C(S), i = 
1,... ,J. 

We prove the theorem by using the following three lemmas. The first lemma 
examines the error of approximating the surface 5, and the third lemma com- 
putes the error of approximating the integrand function f . The second lemma 
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estimates an intermediate term which does not have an intuitive meaning. Write 

E1 = ff(Q) dSQ-f fn(Q) dSQ 

N 

(4.2) = >ZJf(mK(s, t)) I DsmK x DtmK I ds dt 

N 

-E ZJfn(mK(S, t)) I DShK x DtmiK I dsdt 
K=1 a 

with fn denoting the piecewise polynomial of degree n interpolant of f . 
Decompose E1 as 

E1 =El, +E12 +E13, 
N 

El, =L f(mK(S) t)) (I DsmK x DtmK I-| DshK x DtihK I)dsdt, 

K=1a 
N 

E12 = [ JIf(mK(s, t)) -fn(MK(S, t))I(I DsMK x DtinK I 
K=1a 

- I DsmK x DtmK J)dsdt, 
N 

E13= [f(mK(S, t)) - fn(MK(S ,t))] I DsmK x DtmK I dsdt. 

K=l a 

As in equation (2.4), we let 

(4.3) mK(s, t) = Fj(uvil+ti2+sV3)= x2(Ui1 + tY2 + siY3) 

x3(U'l + t' + SV3)J 

forsome j and u=1-s-t, (s,t) E , xi E Cr+3(Rj), i=1,2,3. 
Since the xi are functions of s and t, and also of x and y, we use 
both xi(s, t) and xi(x, y), with the context indicating which is intended. 

Lemma 4.3. Use the Lagrange form of the interpolating polynomial of degree 

r > 0 to approximate the surface parametrization m as in (4.3). Define 

r+ 3 if r is even, 

r + 2 if r is odd. 

Then for each AK, 

L f(mK(S , t))( | DsmK x DtmK I-| DsnK x DtiK | )ds dt < CK, 

where cK is the size of AK, and C depends on f and { Fj }. 

Proof. Let 

6 

x (s, t) = Zx'(sj, tj)lj(s, t), where (sj, t1) = 
pi' 

i= 1, 2, 3. 

j=l 
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By using the Taylor error formula, we have 

x'(s, t) - xi(s, t) = i(s, t) + Gi(s, t) + Q(K)r+) 

where 

_ 1~~~~~~~+ 
H'(s, t)= (r+ )! [(s+t) x(O 0) 

6(s ,J + tk5t) x (, 0)1j(s, t)] 
j=1 

a 

GI(s, t) +-t) x(O, 0) 

6 a 
(S~+ t )r+2XI(O, O )1j(s,~ t)] E (j as at) 

and Q(a5+3) comes from the (r + 3)rd derivative of xi(s, t). Note that 
the derivatives of xi with respect to (s, t) give rise to formulas involving 
V2- Iv and V3 - F. For example, 

xS(s, t) = axi(uvil + t +SV^3) =s Vx' (V3-i^i) 

with Vx' = I a' . Using the Taylor error formula and expanding 

functions at (s, t) = (O, 0), we obtain 

| DsmK(S, t) x DtmK(s, t) I - I DsinK(S, t) x DtimgK(s , t) 

+E(r+2)(s,t; Vi2-V^1, V^3-iVi) 

EE(r++3)(s2(t;,t-'I, -- + I- 

E(r + 2)(s, t; V-2 - V1 I V-3 - V-1) 

IX2X3 X3 2 [X2H3 + 3H2 _ Xs 2 31 
- {(4x? - 4x5i)[xsHt + x,?H - 4H, - x,?H1 

+ (X3X _ XsX3)[X3H' + XH3- H3_ - xHI] 

+ (x x, - 4x [H + I - I H1 - _ I Dsm(O 0) x D1m(O, 0) 

Note that xs' and xi are the abbreviations of xs(0, 0) and x;(O, 0), 
respectively, whereas Hs and Hi are functions of (s, t) . The error term, 
E(r + 2), is the collection of terms which are of order r + 2 in c5. When r 
is even, E(r + 2) has the following property: 

E(r + 2)(s, t; -(V^ - 'I) ), -(V^ - 'I1)) = E(r + 2)(s, t;V^- 1,^3-1) 

We do not give the explicit formula of E(r + 3) here, but it is the collection 
of terms which are of order r + 3 in c5. It is similar to E(r + 2), and it is 
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an "odd function" of (: 

E(r + 3)(s, t; -(V2 - V1), -(V3-1))=-E(r+3)(s,t; '2-IV1, '3-I51). 
Expanding f(mK(s, t)) about (s, t) = (0, 0), we have 

f(mK(s, t))(I DsmK(s, t) x DtmK(s, t) I - l DsfhK(S, t) x DtrhK(s, t) I) 
(4.4) = f(mK(O, 0)) (E(r + 2) + E(r + 3)) 

+[sfs(mK(O, 0)) + tf (mK(O0, O))]E(r + 2) + (&r+4). 

Case 1. If r is even, Lemma 4.1 shows 

(4.5) jE(r+ 2)(s, t; V2-V1, i3-ii)dsdt = 0. 

Therefore, 

jf(mK (S t))(I DsmK(S, t) x DtmK(s, t) I 

-|i Dsin(s, t) x DtinK(s, t) I)dsdt 

=IE(r + 3)(s, t; V2-V1I, V -t1 ) + O(K- +2) 

where 

IE(r + 3)(s , t; V-2 -V1 V3 -V1 

= f{f(mK(O, O))E(r + 3) 
+ [sfS(mK(O, 0)) + tft (mK( , O))]E(r + 2)}ds dt. 

Thus, this shows that 

jf(mK (s t))(I DsmK(s, t) x DtmK(s, t) I 

- DsMK(S, t) x DtfhK(s, t) I)dsdt 

=(&r+3) for every AK 

Note that 
IE(r + 3)(s, t; -(V2 -'V1), -(V33-iV1)) 

(4.6) -IE(r + 3)(s, t;V2 - VI, V3 - VI) 

and this odd function property will play an important role in the next lemma. 

Case 2. If r is odd, 

IE(r + 2) E(r+ 2)(s, t; V2-VI, i3-i5)dsdt 0, 

but IE(r+ 2) has the same property as IE(r + 3) in (4.6). Hence, when r 
is odd, 

J f(mK(S, t))(I DsmK(S, t) x DPmK(s, t) I -|i DSK(S, t) x DtinK(s, t) I)ds dt 

is Q((5r+2) for every AK. 5 
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Lemma 4.4. There holds El I = Q(5r). 

Proof. For r even, consider a symmetric pair of triangles, as in Figure 3. For 
the parametrizations of the two triangles, use 

ml (s, t) = F(uv'l + tv' + SV3) 

m2(s, t) = F(uvil + th + sV5). 

Then, 

2 

? j f(MK (S t))(I DsmK(s, t) x DtmK(s, t) I 
K=1 

- | DsinK(S, t) x DtinK(s, t) I)dsdt 
= IE(r + 3)(s, t; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~V2 - vI, 13-v) + IE(r + 3)(s,t -v s-v) 

+ O (K- r+) 

Using (4.6) and (2.5), we have 

IE(r+3)(s,t; i?-V1, v3-v1) + IE(r+3)(s,t; V4-V1, V5-Vi) 

=IE(r + 3)(s, t; V2 -V1 V3 -V1 

+IE(r + 3)(s , t; -(V2- V1 -(V3 -'1)) 

=0. 

Thus, cancellation occurs on each symmetric pair of triangles, and the error 
contributed by each such pair of symmetric AK is Q(&r+4). If there are nj 
triangles for each Rj, we have (nj2 - nj)/2 pairs of triangles with error of 
Q(&r+4), and nj remaining triangles with error of Q(&r+3). We also can see 
that 

5 I/nj . 

Therefore, 

El= I (n - nj)Q(&r+4) + njQ(c5r+3) C = (6r+2 

i.e., the global error from using the Jacobian determinant of the approximate 
surface is 0(&r+2). 

If r is odd, IE(r +2) has the same property as IE(r +3) for r even, and 
we can use the same argument as above to get the global error of Q(& r+ 1). 

Lemma 4.5. Use the Lagrange form of the interpolating polynomial of degree n 
to approximate the integrandfunction f, and use interpolation of degree r > 0 
to approximate the surface parametrization m. Then, E12 -(05n+r+l). 

Proof. Let 

f(mK(s, t)) - fn(mK(S, t)) = Hf,K(s, t) + 0(n+2) 



738 DAVID CHIEN 

where 

Hf,K(s, t) = (n +1)! [(s + t f(mK(0, O)) 

- Ts + t} t f(mK(O, 0))lb(St t)] 

Since 
f(MK(S, )) -fn(MK(S, t)) _ 0(n+ 

and 
I DsmK x DtmK I - I DsMK x DtMK I 0(6r+2) 

for every (s, t) E a and for K - 1, ..., N, we can conclude that 

j[f(mK(s, t)) - fn(mK(S, t))] (I DsmK x DtmK I I DsiK x DtiK l) ds dt 

= Q(n+r+3) 

Therefore, the global error of E12 is 0(3n+r+l). 

Lemma 4.6. There holds E13 = o(4n). 

Proof. If n is even, for every (s, t) in a we can expand about (s, t) = 

(0, 0) to obtain 

J [f(mK(s, t))-fn(mK(S, t))] I DsmK x DtmK I dsdt 

(4.7)a 
( IHf,K(s, t) l Dsm(O O) x Dtm(O 0)1 dsdt + o(e5n+4). 

Thus, we have proved that E13 is of order n + 2. But, if n is odd, 
the cancellation does not occur and we can only prove that E13 is of order 
n+l. o 

5. THE NUMERICAL SCHEME 

In ?4, we computed (1.1) by evaluating (1.2) analytically. Here we will eval- 
ate (1.2) numerically and examine the error. Let {lw} represent the weights 

appropriate for the numerical integration scheme, and let {uj} be the node 
points on v. Note that the node points uj are not neccssarly the same 
as the node points we use for constructing the approximation of the integrand 
function f and the surface parametrization m. Therefore, we could have 
three different sets of node points involved in this paper. One thins to remem- 
ber is that the node points for the numerical integration scheme do not have to 
be evenly spaced, in contrast to the way we chose node points for interpolation 
in ?4. 
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Consider the general numerical integration scheme 

N 

f(Q) dSQ = E f(mK(s t)) I DsmK xDtmK I dsdt 

(5.1.) N Ad 

t Z Z wf fl(mK(Uj)) I DsiK(uj) x DtMKK(Uj) I, 
K=1 j=1 

where /1d is the number of node points required for the numerical integration 
scheme, and ,u is the degree of precision of the integration scheme, i.e., 
the scheme integrates exactly all polynomials of degree less than or equal to 
,u. Using the numerical integration scheme to approximate (1.1), we have the 
following theorem. In order to prove the theorem, we have to assume that f 
and mK for each K = 1, ... , J are at least ,u + 2 times continuously 
differentiable because the numerical scheme being chosen has degree of precision 
IL. 

Theorem 5.1. Let f, fn, m, and imn be defined as in ?4 and choose a numer- 
ical scheme which has degree of precision ,u . If ,u > r, then 

N 

E2= f(mK(s, t)) I DsmK X DtmK | dsdt 
K=1a 

N A-d 

- Z E Wjfn(mK(Uj)) | DsinK(Uj) x DtinK(Uj) 
K=1 j=1 

= Q(U), 

where u = min{i, i}. If ,u < r, then E2 = Q(u), where u = min{,, ni} 
with u=,+ 2 if , is even, and u=u+ 1 if , is odd. 

Proof. In order to analyze the error, we decompose the error into four parts: 

E2 = E21 +E22 +E23 +E24, 

where 

N 

E21=ZE f(mK(S, t)) | DsmK x DtmK | dsdt 
K=1 

N AId 

- E E Wjf(mK(Uj)) I DsmK(uj) x DtmK(u) lUa 

K=1 j=1 

N Ad 

E22= Wjf(mK (Uj))(I DsmK (Uj) x DtmK (Uj) 
K=1 j=1 

- DsiK(Uj) X DtiK(Uj) j), 
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N Ad 

E23 = Z ZWj[f(mK(u1)) - fn(mK(Uj))](I DsihK(Uj) x DtihK(u) I 
K=1 j=1 

- | DsmK(Uj) X DtmK(uj) j), 

N Ald 

E24 = Z ZWj[f(mK(Uj)) - fn(mK(Uj))] I DsmK(Uj) x DtmK(uj) I. 
K=1 j=1 

E21 is the error from the numerical integration, and E22- E24 are the errors 
from using the approximate surface mi and integrand fn. For notation, recall 
that fn, wii, r, and n are defined as in ?4. 

Lemma 5.2. If the numerical integration scheme being chosen has precision of 
degree ,u, then E21 is 0(3"). 

Proof. This is a standard result and we omit the proof. o 

Lemma 5.3. If the degree of precision of the numerical scheme, s,.is less than 
r, which is the degree of the Lagrange interpolant of the surface parametrization, 
then E22 = O(r) if r is even and E22 = Q(3r+1) if r is odd. If u> r, 

then E22 = O( ). 

Proof Using (4.4), we have 

f(mK(s, t))(| DsmK(s, t) x DtmK(s, t) |- I DsiK(s, t) x DtinK(S, t) I) 
= f(mK(O, 0)) (E(r + 2) + E(r + 3)) 

+ [Sfs(mK(O, 0)) + tft (mK(O, 0))]E(r + 2) + 0(5r+4). 

We divide the proof into two cases. 

Case 1. A > r. If r is even, (4.5) is true. Since E(r + 2) is a polynomial of 
degree r in s and t, and the degree of precision of the numerical scheme 
is equal or higher than r, we have 

Yd 

EwjE(r + 2)(uj; V2'IV, 3 -V1 ) 
j=1 

=jE(r+2)(s,t; V2-v1, V^3- VT)dsdt = 0. 

An argument similar to the one in the proof of Lemma 4.4 completes the proof 
in this case. 

Case 2. ,u < r. In this case, (4.5) is not true, and the error contributed by each 
AK is 0(KrK+2). Therefore, the global error is O(37) if r is even, and it is 
O(3r+1) because cancellation occurs when r is odd. o 

Lemma 5.4. There holds E23 = Q(5n+r+l ). 
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Proof. This is a direct application of Lemma 4.5, and the degree of precision 
of the numerical scheme does not affect this result. c 

Liemma 5.5. There holds E24 = O(cW). 

Proof. Replacing the integration in (4.7) by a numerical scheme, we get the 
result. Also, this result is not affected by the degree of precision of the numerical 
scheme which we choose to use. E 

Combining Lemmas 5.2-5.5 yields the assertion in Theorem 5.1. c 

6. NUMERICAL EXAMPLES 

We give two sets of numerical examples by using the methods analyzed in 
?5. All of the numerical examples of this paper were computed on an HP 700 
series work station and were computed by using the boundary element package 
from Atkinson [3]. 

The first set of numerical examples gives results for the 3-point numerical 
integration method. Thus, we approximate the integrand f and the surface 
parametrization m by piecewise quadratic polynomials and we approximate 
the integration by the formula 

(6. 1) lah(s, t)ds dt E h ( pj) 
j=4 

which has degree of precision two over a. This numerical scheme uses three 
midpoints, and all the three sets of node points are the same. 

Consider the numerical evaluation of 

I= JF(Q)dSQ, 

(6.2)5 
F(Q) = F(x, y, z) = a0(ez) . 

The exterior unit normal to S at Q is nQ . For S we first take the ellipsoid 
given by 

X2 y2 Z2 

T2 + T2 + 2 = 

We have 
2abir - I= -2 [(c - 1)ec + (c + 1)ec]. 

The normal derivative in the definition of F is done exactly. The results are 
given in Table 1. The column labelled Order gives the logarithm to the base 

TABLE 1. Ellipsoidal surface with (a, b, c) = (1, .75, .5) 

N Error Order 
8 2.39E-1 

32 3.28E -2 2.87 
128 2.51E-3 3.71 
512 1.66E -4 3.92 

2048 1.05E -5 3.98 



742 DAVID CHIEN 

TABLE 2. Elliptical paraboloid surface with (a, b, c) = (1, .75, .5) 

N Error Order 
8 -4.29E -2 

32 -l.19E-2 1.85 
128 -1.79E-3 2.73 
512 -1.95E-4 3.20 

2048 -1.80E-5 3.43 
8192 -1.52E-6 3.57 

TABLE 3. Elliptical paraboloid surface with (a, b, c) = (1, .75, .5) 

N Error Order 
8 -1.37E-1 

32 -1.41E-1 -0.04 
128 -4.66E-2 1.60 
512 -1.25E-2 1.90 

2048 -3.17E-3 1.98 

two of the ratios of successive errors. Thus for u = Order, the error at the 
node points is behaving like 0(5u). 

The second surface we use is an elliptical paraboloid 

x2 2 
+b2= 0 < z < c, 

together with the "cap" of points (x, y, z) satisfying 

X2 Y2 
a2 +b2 -, ZC 

The numerical results for this surface are given in Table 2. The integral and 
integrand are given in (6.2), the same as for Table 1. This numerical example 
shows that the order of convergence approaches four more slowly than for the 
ellipsoidal surface. 

In the next example, we use three vertices to construct the numerical scheme: 

h h(s t)ds dt ;z1 ,h(pj) 
6j=1 

which has degree of precision one over a. As in the previous examples, we use 
piecewise quadratic approximation of the surface, but use linear interpolation 
for the integrand. Thus, we would expect the rate of convergence to be two, 
and Table 3 agrees with this. 
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